xuufo学习网高中高一人教版高一数学说课稿:三角函数

人教版高一数学说课稿:三角函数

2020-05-04 19:15:01高一133

  【导语】进入到高一阶段,大家的学习压力都是呈直线上升的,因此平时的积累也显得尤为重要,免费高一频道为大家整理了《人教版高一数学说课稿:三角函数》希望大家能谨记呦!!

  【篇一】

  一、教材分析

  一内容说明

  函数是中学数学的重要内容,中学数学对函数的研究大致分成了三个阶段。

  三角函数是代表性的一种基本初等函数。4.8节是第二章《函数》学习的延伸,也是第四章《三角函数》的核心内容,是在前面已经学习过正、余弦函数的图象、三角函数的有关概念和公式基础上进行的,其知识和方法将为后续内容的学习打下基础,有承上启下的作用。

  本节课是数形结合思想方法的良好素材。数形结合是数学研究中的重要思想方法和解题方法。

  数学家华罗庚先生的诗句:......数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休......可以说精辟地道出了数形结合的重要性。

  本节通过对数形结合的进一步认识,可以改进学习方法,增强学习数学的自信心和兴趣。另外,三角函数的曲线性质也体现了数学的对称之美、和谐之美。

  因此,本节课在教材中的知识作用和思想地位是相当重要的。

  二课时安排

  4.8节教材安排为4课时,我计划用5课时

  三目标和重、难点

  1.教学目标

  教学目标的确定,考虑了以下几点:

  1高一学生有一定的抽象思维能力,而形象思维在学习中占有不可替代的地位,所以本节要紧紧抓住数形结合方法进行探索;

  2本班学生对数学科特别是函数内容的学习有畏难情绪,所以在内容上要降低深难度。

  3学会方法比获得知识更重要,本节课着眼于新知识的探索过程与方法,巩固应用主要放在后面的三节课进行。

  由此,我确定了以下三个层面的教学目标:

  1知识层面:结合正弦曲线、余弦曲线,师生共同探索发现正余弦函数的性质,让学生学会正确表述正、余函数的单调性和对称性,理解体会周期函数性质的研究过程和数形结合的研究方法;

  2能力层面:通过在教师引导下探索新知的过程,培养学生观察、分析、归纳的自学能力,为学生学习的可持续发展打下基础;

  3情感层面:通过运用数形结合思想方法,让学生体会数学问题从抽象到形象的转化过程,体会数学之美,从而激发学习数学的信心和兴趣。

  2.重、难点

  由以上教学目标可知,本节重点是师生共同探索,正、余函数的性质,在探索中体会数形结合思想方法。

  难点是:函数周期定义、正弦函数的单调区间和对称性的理解。

  为什么这样确定呢?

  因为周期概念是学生第一次接触,理解上易错;单调区间从图上容易看出,但用一个区间形式表示出来,学生感到困难。

  如何克服难点呢?

  其一,抓住周期函数定义中的关键字眼,举反例说明;

  其二,利用函数的周期性规律,抓住“横向距离”和“k∈Z"的含义,充分结合图象来理解单调性和对称性

  二、教法分析

  一教法说明教法的确定基于如下考虑:

  1心理学的研究表明:只有内化的东西才能充分外显,只有学生自己获取的知识,他才能灵活应用,所以要注重学生的自主探索。

  2本节目的是让学生学会如何探索、理解正、余弦函数的性质。教师始终要注意的是引导学生探索,而不是自己探索、学生观看,所以教师要引导,而且只能引导不能代办,否则不但没有教给学习方法,而且会让学生产生依赖和倦怠。

  3本节内容属于本源性知识,一般采用观察、实验、归纳、总结为主的方法,以培养学生自学能力。

  所以,根据以人为本,以学定教的原则,我采取以问题为解决为中心、启发为主的教学方法,形成教师点拨引导、学生积极参与、师生共同探讨的课堂结构形式,营造一种*和谐的课堂氛围。

  二教学手段说明:

  为完成本节课的教学目标,突出重点、克服难点,我采取了以下三个教学手段:

  1精心设计课堂提问,整个课堂以问题为线索,带着问题探索新知,因为没有问题就没有发现。

  2为便于课堂操作和知识条理化,事先制作正弦函数、余弦函数性质表,让学生当堂完成表格的填写;

  3为节省课堂时间,制作幻灯片演示正、余弦函数图象和性质,也可以使教学更生动形象和连贯。

  三、学法和能力培养

  我发现,许多学生的学习方法是:直接记住函数性质,在解题中套用结论,对结论的来源不理解,知其然不知其所以然,应用中不能变通和迁移。

  本节的学习方法对后续内容的学习具有指导意义。为了培养学法,充分关注学生的可持续发展,教师要转换角色,站在初学者的位置上,和学生共同探索新知,共同体验数形结合的研究方法,体验周期函数的研究思路;帮助学生实现知识的意义建构,帮助学生发现和总结学习方法,使教师成为学生学习的高级合作伙伴。

  授之以渔,与之合作而渔,使学生享受渔之乐趣。因此

  1.本节要教给学生看图象、找规律、思考提问、交流协作、探索归纳的学习方法。

  2.通过本课的探索过程,培养学生观察、分析、交流、合作、类比、归纳的学习能力及数形结合看图说话的意识和能力。

  四、教学程序

  指导思想是:两条线索、三大特点、四个环节

  一导入

  引出数形结合思想方法,强调其含义和重要性,告诉学生,本节课将利用数形结合方法来研究,会使学习变得轻松有趣。

  采用这样的引入方法,目的是打消学生对函数学习的畏难情绪,引起学生注意,也激起学生好奇和兴趣。

  二新知探索主要环节,分为两个部分

  教学过程如下:

  第一部分————师生共同研究得出正弦函数的性质

  1.定义域、值域2.周期性

  3.单调性重难点内容

  为了突出重点、克服难点,采用以下手段和方法:

  1利用多媒体动态演示函数性质,充分体现数形结合的重要作用;

  2以层层深入,环环相扣的课堂提问,启发学生思维,反馈课堂信息,使问题成为探索新知的线索和动力,随着问题的解决,学生的积极性将被调动起来。

  3单调区间的探索过程是:

  先在靠近原点的一个单调周期内找出正弦函数的一个增区间,由此表示出所有的增区间,体现从特殊到一般的知识认识过程。

  **教师结合图象帮助学生理解并强调“距离”“长度”是周期的多少倍

  为什么要这样强调呢?

  因为这是对知识的一种意义建构,有助于以后理解记忆正弦型函数的相关性质。

  4.对称性

  设计意图:

  1因为奇偶性是特殊的对称性,掌握了对称性,容易得出奇偶性,所以着重讲清对称性。体现了从一般到特殊的知识再现过程。

  2从正弦函数的对称性看到了数学的对称之美、和谐之美,体现了数学的审美功能。

  5.最值点和零值点

  有了对称性的理解,容易得出此性质。

  第二部分————学习任务转移给学生

  设计意图:

  1通过把学习任务转移给学生,激发学生的主体意识和成就动机,利于学生作自我评价;

  2通过学生自主探索,给予学生解决问题的自主权,促进生生交流,利于教师作反馈评价;

  3通过课堂教学结构的改革,提高课堂教学效率,最终使学生成为独立的学习者,这也符合建构主义的教学原则。

  三巩固练习

  补充和选作题体现了课堂要求的差异性。

  四结课

  五、板书说明既要体现原则性又要考虑灵活性

  1.板书要基本体现整堂课的内容与方法,体现课堂进程,能简明扼要反映知识结构及其相互联系;能指导教师的教学进程、引导学生探索知识;同时不完全按课本上的呈现方式来编排板书。即体现系统性、程序性、概括性、指导性、启发性、创造性的原则;原则性

  【篇二】

  1通过把学习任务转移给学生,激发学生的主体意识和成就动机,利于学生作自我评价;

  2通过学生自主探索,给予学生解决问题的自主权,促进生生交流,利于教师作反馈评价;

  3通过课堂教学结构的改革,提高课堂教学效率,最终使学生成为独立的学习者,这也符合建构主义的教学原则。

  三巩固练习

  补充和选作题体现了课堂要求的差异性。

  四结课

  五、板书说明既要体现原则性又要考虑灵活性

  1.板书要基本体现整堂课的内容与方法,体现课堂进程,能简明扼要反映知识结构及其相互联系;能指导教师的教学进程、引导学生探索知识;同时不完全按课本上的呈现方式来编排板书。即体现系统性、程序性、概括性、指导性、启发性、创造性的原则;原则性

再来一篇
上一篇:高一数学上册月考试题及答案 下一篇:高一年级数学下册必修二知识点:直线的方程
猜你喜欢